


unctions

Output (range)

10	2 \
4	_3 _4
7	8
5	\bigcup

Function

Not a Function

-1	-1
0	1
1	3
2	5

domain range

$$f(x) = 3 + 4x$$

$$g(x) = 6x + 7$$

Find, in its simplest form,

(a)
$$f(3x)$$
,
 $f(3x) = 3(3+4x)$
 $f(3x) = 3(3+4x)$

[1]

Question 2

$$f(x) = x^3$$

$$= 3x - 5$$

$$h(x) = 2x + 1$$

Work out

(a) ff(2),

[2]

(b) gh(x) and simplify your answer.

$$gh(x) = g(2x+1)$$
= 3(2x+1) - 5
= 6x + 3 - 5
= 6x - 2

(c) $h^{-1}(x)$, the inverse of h(x).

the inverse of
$$h(x)$$
.
Let $y = h(x)$ then $h^{-1}(y) = x$

[2]

$$y: 2x+1$$

 $y-1: 2x$
 $x: \frac{y-1}{2}$
 $h^{-1}(y): \frac{y-1}{2}$
 $h^{-1}(x): \frac{x-1}{2}$

The Maths Society

$$f(x) = 5x - 3$$

$$g(x) = x^2$$

(a) Find fg(-2).

(b) Find gf(x), in terms of x, in its simplest form.

$$gf(x) = g(5x-3)$$
= $(5x-3)^2$
= $25x^2 - 30x + 9$

(c) Find $f^{-1}(x)$.

let
$$y = f(x)$$
 then $f^{-1}(y) = x$ $f^{-1}(y) = \frac{y+3}{5}$
 $y = 5x - 3$ $f^{-1}(x) = \frac{x+3}{5}$
 $\frac{y+3}{5} = x$

Question 4

$$f(x) = 3x - 2$$
 $g(x) = \frac{2}{x+1}, \quad x \neq -1$

(a) Find gf(2).

$$gf(2) = g(3(2)-1)$$

$$= g(4)$$

$$= \frac{2}{4+1} = \frac{2}{5}$$

(b) Solve
$$g(x) = 10$$
.
 $g(x) = 10$

$$\frac{2}{x+1} = 10$$

$$2 = (0x + 10)$$

$$10x = 12$$

(c) Simplify.

$$f(2x) - f(x+2)$$

$$2(3x-2) - (3x-2+2)$$

$$6x-4 - 3x + 1/2$$

$$3x-4$$
The Maths Society

The Maths Society

[2]

[2]

[2]

$$f(x) = (x-3)^2$$

$$g(x) = \frac{x-1}{4}$$

$$h(x) = x^3$$

[2]

[1]

[1]

[2]

Find

$$f(1)$$
,
 $h(1) = h(1-3)^{2}$
 $h(4)$
 $= (4)^{3} = 64$

(b)
$$g^{-1}(x)$$
,

Let
$$y = g(x)$$
 then $g^{-1}(y) = x$
 $y = \frac{x-1}{y} \rightarrow yy+1 = x \rightarrow g^{-1}(y) = yy+1$
 $g^{-1}(x) = yx+1$

$$gh(x) = g(x^{3})$$

$$= \frac{x^{3}-1}{4}$$

(d) the solution to the equation f(x) = 0.

Question 1

$$f(x) = 2x + 3$$
 $g(x) = x^2$

(a) Find fg(6).

$$f_{g}(6) = f(6)^{2}$$

$$= f(36)$$

$$= 2(36) + 3$$

$$= 32 + 3 = 35$$

(b) Solve the equation gf(x) = 100.

$$gf(x) = 100$$

$$g(1x+3)_{2} = 100$$

$$(1x+3) = 100$$

$$4x^{2} + 12x + 9 = 100$$

$$4x^{2} + 12x - 91 = 0$$

$$(2x - 7)(2x + 13) = 0$$

$$x = \frac{3}{2} \text{ (or) } x = -\frac{13}{2}$$

(c) Find $f^{-1}(x)$.

let
$$y : f(x)$$
 then $f^{-1}(y) = x$
 $y : 1x + 3$ $x = \frac{y - 3}{2}$ $f^{-1}(x) = \frac{x - 3}{2}$
 $y - 3 = 2x$ $f^{-1}(y) = \frac{y - 3}{2}$
and ff⁻¹(5). The Maths Society [1]

(d) Find ff $^{-1}(5)$. [1] $ff^{-1}(5) = f(\frac{5-3}{2}) = f(1)$ = 2(1)+3 = 5

$$f(x) = 5x + 4$$
 $g(x) = \frac{1}{2x}, \quad x \neq 0$ $h(x) = \left(\frac{1}{2}\right)^x$

Find

(a)
$$fg(5)$$
,
 $fg(5) = f(\frac{1}{2(5)}) = f(\frac{1}{10}) = 5(\frac{1}{10}) + 4$
 $= \frac{1}{2} + 4 = 4.5$

(b)
$$gg(x)$$
 in its simplest form, $gg(x) : g(\frac{1}{2x}) : \frac{1}{2(\frac{1}{2x})} : \infty$ [2]

(c)
$$f^{-1}(x)$$
,
Let $y = f(x)$ then $f'(y) = \frac{y}{5}$. $f''(x) = \frac{x-4}{5}$

(d) the value of
$$x$$
 when $h(x) = 8$.

$$(\frac{1}{2})^{x} = 8$$

$$x = -3$$
[2]

Question 3

$$f(x) = x + \frac{2}{x} - 3, x$$
, 0 $g(x) = \frac{x}{2} - 5$

Find

(a)
$$fg(18)$$
, $fg(18) = f(\frac{18}{2} - 5)$
 $f(4)$
 $f($

(b)
$$g^{-1}(x)$$
.

Let $y = q(x)$ then $q^{-1}(y) = x$.

 $y = \frac{x}{2} - 5$
 $y = \frac{x}{2} - 5$
The Maths Society
 $2(y + 5) = x$
 $x = 2y + 10$

$$f(x) = 4(x+1)$$
 $g(x) = \frac{x^3}{2} - 1$

(a) Write down the value of x when
$$f(x) = 2$$
.
Let $y = f(x)$ then $f'(y) = x$

$$y = 4(x + 1)$$

$$y = 4$$

$$y = 4$$

(b) Find fg(x). Give your answer in its simplest form.

fg(x):
$$f(\frac{x^3}{2}-1)$$

let y:
$$g(x)$$
 then $g^{-1}(y) = x$

y: $\frac{3}{2} - 1$

Question 1

$$f(x) = x^2 + 1$$
 $g(x) = \frac{x+2}{3}$

(a) Work out ff(-1).

$$ff(-1) = f(-1^{2}+1)$$
 $f(2)$
 $f(2)$
 $f(3) = f(2)$

9-(4) = 34-5

(b) Find gf(3x), simplifying your answer as far as possible.

$$gf(3x) = g(3x^{2}+1)$$

$$= 3x^{2}+1+2$$

$$= 3x^{2}+3 = x^{2}+1$$

(c) Find $g^{-1}(x)$.

Let
$$y = g(x)$$
 then $g^{-1}(y) = x$
 $y = \frac{x+2}{3}$
 $g^{-1}(x) = 3x-2$
The Maths Society

[2]

[2]

$$f'(y) = \frac{y-y}{y}$$

 $f'(x) = \frac{x-y}{y}$ [1]
 $\frac{x-y}{y} = 2$

[2]

$$2 = \infty^{3}$$

$$y) = 3\sqrt{2y+2}$$

$$y) = 3\sqrt{2y+2}$$

2=12

$$f(x) = 3x + 5$$
 $g(x) = 4x - 1$

(a) Find the value of gg(3).

(b) Find fg(x), giving your answer in its simplest form.

$$f_5(x) = f(4x-1)$$

= 3(4x-1) + 5
= (2x - 3 + 5)
= 12x + 2
= 2(6x+1)

(c) Solve the equation.

(c) Solve the equation.
Let
$$y = f(x)$$
 then $f'(y) = x$
 $y = 3x + 5$ $f''(y) = \frac{y - 5}{3} = 11$
 $\frac{y - 5}{3} = x$ $f''(x) = \frac{x - 5}{3} = 3$
[1]

Question

$$f(x) = \frac{1}{x+4} (x \neq -4)$$

$$g(x) = x^2 - 3x$$

$$h(x) = x^3 + 1$$

(a) Work out fg(1).

fg(1).

fg(1) =
$$f(1^2 - 3(1))$$

= $f(1 - 3)$

= $f(-2)$

= $\frac{1}{-2+4}$ = $\frac{1}{2}$

(b) Find $h^{-1}(x)$.

Find
$$h^{-1}(x)$$
.

Let $y : h(x)$ then $h^{-1}(y) : x$
 $y : x^3 + 1$
 $y - 1 = x^3$
 $x = 3\sqrt{y^{-1}}$

[2]

(c) Solve the equation g(x) = -2.

$$g(x) : -1$$
 $n^2 - 3x = -2$
 $x^2 - 3x + 2 = 0$
 $(x - 2)(x - 1) = 0$
 $x = 2$ (or) $x = 1$

The Maths Society

[3]

$$f(x) = x^3 \qquad g(x) = 2x - 3$$

(a) Find

(i)
$$g(6)$$
, = 2(6)-3 [1] = (2-3) = 9

(ii)
$$f(2x)$$
.

f(1x) = $(2x)^3$
a 8x³

(b) Solve
$$fg(x) = 125$$
. [3]

$$fg(x) = 125$$

$$f(1x-3) = 125$$

$$(1x-3)^3 = 125$$

$$2x-3 = 3$$

$$2x-3 = 3\sqrt{125}$$

(c) Find the inverse function
$$g(x)$$
.
Let $y : g(x)$ then $g^{-1}(y) : x$.
 $y : 2x - 3$

$$g^{-1}(y) = \frac{y+3}{2}$$

Question 5

$$f(x) = x^{2}$$
 $g(x) = 2^{x}$ $h(x) = 2x - 3$

(b) Find
$$hh(x)$$
 in its simplest form.

(a) $hh(x) = h(2x-3)$

(b) $hh(x) = h(2x-3)$

(c) $hh(x) = h(2x-3)$

(c) Find
$$fg(x+1)$$
 in its simplest form.

$$fg(x+1) = f(2^{x+1})$$

$$= (2^{x+1})^{2}$$

$$= 2^{x+2}$$
The Maths Society

$$f(x) = \frac{x}{4} - 3$$

$$f(x) = \frac{x}{4} - 3$$
 $g(x) = 6x - 7$ $h(x) = 2^x$

$$h(x) = 2^x$$

[2]

[2]

[2]

[1]

(a) Work out the value of x when f(x) = -0.5.

(b) Find $g^{-1}(x)$.

Let
$$y: g(x)$$
 then $q^{-1}(y) = x$
 $y: 6x-7$ $q^{-1}(y): \frac{y+7}{6}$
 $\frac{y+7}{6} = x$ $q^{-1}(x): \frac{x+7}{6}$

(c) Work out the value of x when h(x) = f(13).

$$h(x) = f(13)$$
 $2^{x} = \frac{13}{4} - 3$
 $2^{x} = \frac{1}{4}$
 $2^{x} = 2^{-2}$

Question 2

$$f(x) = x^2$$

$$g(x) = \frac{x-3}{2}$$

Find

(a)
$$f(-5)$$
, (-5) = 25

(b)
$$gf(x)$$
, $gf(x) : g(x^2)$
: $\frac{x^2 - 3}{2}$

(c)
$$g^{-1}(x)$$
. [2]

Let y= g(x) then
$$g^{-1}(y)=x$$

y= $\frac{x-3}{2}$
 $2y+3=x$
 $g^{-1}(y)=2y+3$
 $g^{-1}(x)=2x+3$

The Maths Society

$$f(x) = 5-3x$$

(b) Find f(x + 2).

[1]

[2]

[2]

[2]

(c) Find ff(x), in its simplest form.

$$ff(x) = f(5-3x)$$

= 5-3(5-3x)
= 5-15+9x
= -10+9x

(d) Find $f^{-1}(x)$, the inverse of f(x).

Let
$$y = f(x)$$
 then $f^{-1}(y) = x$
 $y = 5 - 3x$ $f^{-1}(y) = \frac{5 - y}{3}$
 $3x = 5 - y$ $f^{-1}(x) = \frac{5 - x}{3}$

Question 4

$$f(x) = 3x + 5 \qquad g(x) = x^2$$

(a) Find
$$g(3x)$$
. [1]

(b) Find
$$f^{-1}(x)$$
, the inverse function.
Let $y : f(x)$ then $f^{-1}(y) : x$
 $y : 3x + 5$ $f^{-1}(y) : \frac{y - 5}{3}$
 $\frac{y - 5}{3} : x$ $f^{-1}(x) : \frac{x - 5}{3}$

(c) Find ff(x).

Give your answer in its simplest form.

$$f(x) = (x+2)^3 - 5$$

$$g(x) = 2x + 10$$

$$f(x) = (x+2)^3 - 5$$
 $g(x) = 2x + 10$ $h(x) = \frac{1}{x}, x \neq 0$

Find

(a)
$$gf(x)$$
,
 $gf(x) = g(x+2)^3 - 5$
= $2(x+2)^3 - 5) + 10$
= $2(x^3+6x^2+12x+6-5)+10$

(b)
$$f^{-1}$$
 = $2x^3 + (2x^2 + 24x + 6 + 10)$
= $2x^3 + (2x^2 + 24x + 16)$

let
$$y = f(x)$$
 then $f^{-1}(y) = \infty$
 $y = (x+2)^3 - 5$
 $y+5 = (x+2)^3$

$$3\sqrt{y+5} = 2+2$$

 $3\sqrt{y+5} - 2 = 2$

$$3\sqrt{y+5} = 2 + 2$$

$$3\sqrt{y+5} - 2 = 2$$

$$3\sqrt{y+5} - 2 = 2$$

$$f^{-1}(x) = 3\sqrt{x+5} - 2$$

(c) gh
$$\left(-\frac{1}{5}\right)$$
.
gh $\left(-\frac{1}{5}\right) = 9\left(-\frac{1}{5}\right)$
= 9(-5)

Question 2

$$f(x) = (x-1)^3$$
 $g(x) = (x-1)^2$

$$h(x) = 3x + 1$$

[2]

[2]

(b) Find gh(x) in its simplest form.

$$gh(x) = g(3x+1)$$

= $(3x+(-1)^2$

[2]

(c) Find
$$f^{-1}(x)$$
.

(a)
$$f(x) = 1 - 2x$$
.

(i) Find
$$f(-5)$$
.

$$f(-5) = 1 - 2(-5)$$

$$= 1 + 10$$

$$= 11$$

(ii)
$$g(x) = 3x - 2$$
.

Find gf(x). Simplify your answer.

$$gf(x) = g(1-2x)$$
= $3(1-2x)-2$
= $3-6x-2$

[2]

(b)
$$h(x) = x^2 - 5x - 11$$
.

Solve
$$h(x) = 0$$
.

Show all your working and give your answer correct to 2 decimal places.

$$x = -b \pm \int_{0}^{2} \frac{49c}{2}$$

$$x = -b \pm \int_{0}^{2} \frac{49c}{2}$$

$$x = \frac{5 + \sqrt{69}}{2}$$

$$x$$

Question 4

f:
$$x \rightarrow 1 - 2x$$
 and g: $x \rightarrow \frac{x}{2}$.

(a) Find fg(7).

$$fg(7) = f(\frac{1}{2})$$

 $\vdots \quad 1 - 2(\frac{1}{2})$

(b) (i) Solve
$$f(x) = g(x)$$
. [2] $1-2x = \frac{2}{2}$ $x = \frac{2}{3}$ $2-4x = x$ $2 = 5x$

(ii) The graphs of y = f(x) and y = g(x) meet at M. Find the coordinates of M. [1]

$$y=1-2x$$

 $y=1-2(\frac{2}{5})$
 $=\frac{1}{5}$ $(\frac{2}{5},\frac{1}{5})$

$$f: x \to 2x - 7$$
 $g: x \to \frac{1}{x}$

Find

(a)
$$fg\left(\frac{1}{2}\right)$$
, $f\left(\frac{1}{2}\right)$: $f(2)$: $2(2)-7$: $4-7$: -3

(b) gf(x),

$$gf(x) : g(2x-7)$$

$$= \frac{1}{2x-7}$$

(c) $f^{-1}(x)$.

Let y=f(x) then
$$f^{-1}(y)=\infty$$

y= $2x-7$
 $\frac{y+7}{2}=x$
 $f^{-1}(y)=\frac{y+7}{2}$

Question 2

$$f(x) = x^2 + 2$$
 $g(x) = (x+2)^2$

$$g(x) = (x+2)^2$$

$$h(x) = 3x - 5$$

[2]

[1]

[2]

[2]

[2]

Find

(a)
$$gf(-2)$$
, $g(-2^2+2)=g(6)$ = $(6+2)^2=64$

(b) $h^{-1}(22)$.

Let
$$y=hOc$$
) then $h^{-1}(y)=x$
 $y=3x-5$

$$h^{-1}(y) = \frac{y+5}{3}$$

$$h^{-1}(x) = \frac{3}{3}$$

The Maths Society

$$f(x) = 4x + 1$$
 $g(x) = x^3 + 1$ $h(x) = \frac{2x + 1}{3}$

(a) Find the value of gf(0).

$$g(0+1)=g(1)$$
= $1^{3}+1$
= 2 [2]

(b) Find
$$fg(x)$$
. Simplify your answer.

$$fg(x) = f(x^3+1)$$

$$= 4(x^3+1)+1$$

$$= 4x^3+4+1$$

$$= 4x^3+5$$
(c) Find $h(x)$.

Let
$$y: h(x)$$
 then $h^{-1}(y) = x$
 $y: \frac{2x+1}{3}$
 $h^{-1}(y) = \frac{3y-1}{2}$
 $h^{-1}(x) = \frac{3x-1}{2}$
[2]

Question 4

$$f(x) = \cos x^{\circ}, \quad g(x) = 2x + 4.$$

Find

(a)
$$f(60)$$
, $z = \cos 60$
 $z = \frac{1}{2}$

(b)
$$fg(88)$$
,
 $fg(88) = f(2(88)+4)$
 $= f(180)$
 $= cos 180$

(c)
$$g^{-1}(f(x))$$
. [2]

Let y= g(x) then
$$g^{-1}(y) = x$$

 $y = 2x + 4$ $g^{-1}(y) = \frac{y - 4}{2}$ The Maths Society
 $\frac{y - 4}{2} = x$ $g^{-1}(x) = \frac{x - 4}{2}$ $g^{-1}(fx) = \frac{\cos x - 4}{2}$

The function f(x) is given by

$$f(x) = 3x - 1.$$

Find, in its simplest form,

(a)
$$f^{-1}f(x)$$
,
let $y = f(x)$ then $f^{-1}(y) = x$
 $y = 3x - 1$ $f^{-1}(y) = \frac{y + 1}{3}$
(b) $ff(x)$. [1]

$$ff(x) = f(3x-1)$$

$$= 3(3x-1)-1$$

$$= 9x-3-1$$

$$= 9x-4$$

Question 2

$$f: x \mapsto 5 - 3x.$$

(b) Find
$$f^{-1}(x)$$
.

Let $y = f(x)$ then $f^{-1}(y) : x$
 $y = 5 - 3x$
 $y - 5 = -3x$
 $y - 5 = -3x$
 $y - 5 = 3x$
 $y - 4 = 5 - 4$
 $y - 5 = 3x$
 $y - 4 = 5 - 4$
 $y - 5 = 3x$
 $y - 4 = 5 - 4$
 $y - 5 = 3x$
 $y - 4 = 5 - 4$
 $y - 5 = 3x$
 $y - 4 = 5 - 4$
 $y - 5 = 3x$
 $y - 4 = 5 - 4$
 $y - 5 = 3x$
 $y - 5 = 3x$
 $y - 6 = 6$
 $y - 7 = 6$
 $y -$

(c) Find ff (8).

$$ff^{-1}(8) = f(\frac{5-8}{3})$$
 $f(-1)$
 $f(-1)$
 $f(-1)$
 $f(-1)$

The Maths Society

 $f(-1)$

$$f(x) = \frac{x + 3}{x}, x \neq 0.$$

(a) Calculate f
$$(\frac{1}{4})$$
.
 $\frac{1}{4} + 3$

$$\frac{1}{4}$$
).

[1]

[2]

[1]

(b) Solve
$$f(x) = \frac{1}{4}$$
.

$$\frac{x+3}{x} = \frac{1}{4}$$

$$x+3 = \frac{1}{4}x$$

$$2-\frac{1}{4}x=-3$$

Question 4

$$f(x) = 10^x.$$

(b) Write down the value of
$$f(1)$$
.

Let $y: 10^{x}$ then $f(y):x$

The Maths Society

$$f(x) = \frac{x+1}{2}$$
 and $g(x) = 2x + 1$.

(a) Find the value of gf (9).

$$9(\frac{9+1}{2}) = 9(5)$$
= 2(5)+1

(b) Find gf(x), giving your answer in its simplest form.

$$gf(x) = g(\frac{x+1}{2})$$

= $2(\frac{x+1}{2})+1$
= $x+1+1$

(c) Solve the equation $g(x)^{-1} = 1$.

Let
$$y = g(x)$$
 then $g'(y) = 2c$
 $y = 2x + 1$
 $y = 1$
 $y = 1$
 $g'(y) = y = 1$
 $g'(y) = y = 1$
 $g'(x) = \frac{x-1}{2}$
 $g'(x) = \frac{x-1}{2}$

n=3

Question 6

f: $x \rightarrow 2x - 1$ and g: $x \rightarrow x^2 - 1$. Find, in their simplest forms,

(a)
$$f^{-1}(x)$$
,
let $y = f(x)$ then $f^{-1}(y) = x$
 $y = 2x - 1$ $f^{-1}(y) = \frac{y+1}{2}$
 $\frac{y+1}{2} = x$ $f^{-1}(x) = \frac{x+1}{2}$

[1]

[2]